Iteratively reweighted LASSO for mapping multiple quantitative trait loci

نویسندگان

  • Yongxin Liu
  • Tianfu Yang
  • Hongwang Li
  • Runqing Yang
چکیده

The iteratively reweighted least square (IRLS) method is mostly identical to maximum likelihood (ML) method in terms of parameter estimation and power of quantitative trait locus (QTL) detection. But the IRLS is greatly superior to ML in terms of computing speed and the robustness of parameter estimation. In conjunction with the priors of parameters, ML can analyze multiple QTL model based on Bayesian theory, whereas under a single QTL model, IRLS has very limited statistical power to detect multiple QTLs. In this study, we proposed the iteratively reweighted least absolute shrinkage and selection operator (IRLASSO) for extending IRLS to simultaneously map multiple QTLs. The LASSO with coordinate descent step is employed to efficiently estimate non-zero genetic effect of each locus scanned over entire genome. Simulations demonstrate that IRLASSO has a higher precision of parameter estimation and power to detect QTL than IRLS, and is able to estimate residual variance more accurately than the unweighted LASSO based on LS. Especially, IRLASSO is very fast, usually taking less than five iterations to converge. The barley dataset from the North American Barley Genome Mapping Project is reanalyzed by our proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Linear Model for Mapping Discrete Trait Loci Implemented with LASSO Algorithm

Generalized estimating equation (GEE) algorithm under a heterogeneous residual variance model is an extension of the iteratively reweighted least squares (IRLS) method for continuous traits to discrete traits. In contrast to mixture model-based expectation-maximization (EM) algorithm, the GEE algorithm can well detect quantitative trait locus (QTL), especially large effect QTLs located in large...

متن کامل

PROC QTL—A SAS Procedure for Mapping Quantitative Trait Loci

Statistical analysis system (SAS) is the most comprehensive statistical analysis software package in the world. It offers data analysis for almost all experiments under various statistical models. Each analysis is performed using a particular subroutine, called a procedure (PROC). For example, PROC ANOVA performs analysis of variances. PROC QTL is a user-defined SAS procedure for mapping quanti...

متن کامل

Microsatellite mapping of quantitative trait loci affecting carcass traits on chromosome 1 in half-sib families of Japanese quail (Coturnix japonica)

The objective of this study was to identify the quantitative trait loci (QTL) affecting carcass traits on chromosome 1 in Japanese quail. The populations comprised of 422 progeny in 9 half-sib families. Phenotypic data on carcass weight, carcass parts, and the internal organs were collected on 422 progeny. Nine half-sib families were genotyped for 8 microsatellite markers covering chromosomes 1...

متن کامل

Bayesian LASSO for quantitative trait loci mapping.

The mapping of quantitative trait loci (QTL) is to identify molecular markers or genomic loci that influence the variation of complex traits. The problem is complicated by the facts that QTL data usually contain a large number of markers across the entire genome and most of them have little or no effect on the phenotype. In this article, we propose several Bayesian hierarchical models for mappi...

متن کامل

Extended Bayesian LASSO for multiple quantitative trait loci mapping and unobserved phenotype prediction.

The Bayesian LASSO (BL) has been pointed out to be an effective approach to sparse model representation and successfully applied to quantitative trait loci (QTL) mapping and genomic breeding value (GBV) estimation using genome-wide dense sets of markers. However, the BL relies on a single parameter known as the regularization parameter to simultaneously control the overall model sparsity and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Briefings in bioinformatics

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2014